3.208 \(\int \frac {c+d x}{a+b x} \, dx\)

Optimal. Leaf size=25 \[ \frac {(b c-a d) \log (a+b x)}{b^2}+\frac {d x}{b} \]

[Out]

d*x/b+(-a*d+b*c)*ln(b*x+a)/b^2

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 25, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 1, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {43} \[ \frac {(b c-a d) \log (a+b x)}{b^2}+\frac {d x}{b} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*x)/(a + b*x),x]

[Out]

(d*x)/b + ((b*c - a*d)*Log[a + b*x])/b^2

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin {align*} \int \frac {c+d x}{a+b x} \, dx &=\int \left (\frac {d}{b}+\frac {b c-a d}{b (a+b x)}\right ) \, dx\\ &=\frac {d x}{b}+\frac {(b c-a d) \log (a+b x)}{b^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 25, normalized size = 1.00 \[ \frac {(b c-a d) \log (a+b x)}{b^2}+\frac {d x}{b} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x)/(a + b*x),x]

[Out]

(d*x)/b + ((b*c - a*d)*Log[a + b*x])/b^2

________________________________________________________________________________________

fricas [A]  time = 0.81, size = 24, normalized size = 0.96 \[ \frac {b d x + {\left (b c - a d\right )} \log \left (b x + a\right )}{b^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)/(b*x+a),x, algorithm="fricas")

[Out]

(b*d*x + (b*c - a*d)*log(b*x + a))/b^2

________________________________________________________________________________________

giac [A]  time = 0.94, size = 26, normalized size = 1.04 \[ \frac {d x}{b} + \frac {{\left (b c - a d\right )} \log \left ({\left | b x + a \right |}\right )}{b^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)/(b*x+a),x, algorithm="giac")

[Out]

d*x/b + (b*c - a*d)*log(abs(b*x + a))/b^2

________________________________________________________________________________________

maple [A]  time = 0.00, size = 32, normalized size = 1.28 \[ -\frac {a d \ln \left (b x +a \right )}{b^{2}}+\frac {c \ln \left (b x +a \right )}{b}+\frac {d x}{b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x+c)/(b*x+a),x)

[Out]

1/b*d*x-1/b^2*ln(b*x+a)*a*d+1/b*ln(b*x+a)*c

________________________________________________________________________________________

maxima [A]  time = 1.10, size = 25, normalized size = 1.00 \[ \frac {d x}{b} + \frac {{\left (b c - a d\right )} \log \left (b x + a\right )}{b^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)/(b*x+a),x, algorithm="maxima")

[Out]

d*x/b + (b*c - a*d)*log(b*x + a)/b^2

________________________________________________________________________________________

mupad [B]  time = 0.04, size = 26, normalized size = 1.04 \[ \frac {d\,x}{b}-\frac {\ln \left (a+b\,x\right )\,\left (a\,d-b\,c\right )}{b^2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c + d*x)/(a + b*x),x)

[Out]

(d*x)/b - (log(a + b*x)*(a*d - b*c))/b^2

________________________________________________________________________________________

sympy [A]  time = 0.17, size = 20, normalized size = 0.80 \[ \frac {d x}{b} - \frac {\left (a d - b c\right ) \log {\left (a + b x \right )}}{b^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)/(b*x+a),x)

[Out]

d*x/b - (a*d - b*c)*log(a + b*x)/b**2

________________________________________________________________________________________